Giải mục 4 trang 19, 20 SGK Toán 11 tập 1 – Cánh Diều

Sử dụng công thức biến đổi tích thành tổng và đặt (a + b = u;,,a – b = v) biến đổi các biểu thức sau thành tích: (cos u + cos v;,,cos u – cos v;,,sin u + sin v;,,sin u – sin v)

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 6

Sử dụng công thức biến đổi tích thành tổng và đặt \(a + b = u;\,\,a – b = v\) biến đổi các biểu thức sau thành tích: \(\cos u + \cos v;\,\,\cos u – \cos v;\,\,\sin u + \sin v;\,\,\sin u – \sin v\)

Phương pháp giải:

Dựa vào công thức biến tích thành tổng để biến đổi:

Lời giải chi tiết:

\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a – b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a – b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u – v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b =  – \frac{1}{2}.\left[ {\cos \left( {a + b} \right) – \cos \left( {a – b} \right)} \right] \Leftrightarrow  – 2.\sin a.\sin b = \cos \left( {a + b} \right) – \cos \left( {a – b} \right)\\ \Leftrightarrow  – 2.\sin \frac{{u + v}}{2}.\sin \frac{{u – v}}{2} = \cos u – \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a – b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a – b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u – v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) – \sin \left( {a – b} \right) = \sin a.\cos b + \cos a.\sin b – \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u – \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u – v}}{2}\end{array}\)

LT – VD

Tính \(D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{\cos \frac{{7\pi }}{9} – \cos \frac{\pi }{9}}}\)

Phương pháp giải:

Sử dụng công thức biến đổi tổng thành tích

Lời giải chi tiết:

Ta có:

\(D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{\cos \frac{{7\pi }}{9} – \cos \frac{\pi }{9}}} = \frac{{2.\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right).\cos \left( {\frac{{\frac{{7\pi }}{9} – \frac{\pi }{9}}}{2}} \right)}}{{ – 2.\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right).\sin \left( {\frac{{\frac{{7\pi }}{9} – \frac{\pi }{9}}}{2}} \right)}} = -\cot \frac{\pi }{3} = -\frac{{\sqrt 3 }}{3}\)

TẢI APP ĐỂ XEM OFFLINE