Giải bài tập 1.6 trang 7 SGK Toán 9 tập 1 – Cùng khám phá

Tìm các giá trị của k sao cho biểu thức P sau có giá trị bằng 2: \(P = \frac{{10}}{3} – \frac{{3k – 1}}{{4k + 12}} – \frac{{7k + 2}}{{6k + 18}}\).

Đề bài

Tìm các giá trị của k sao cho biểu thức P sau có giá trị bằng 2:

\(P = \frac{{10}}{3} – \frac{{3k – 1}}{{4k + 12}} – \frac{{7k + 2}}{{6k + 18}}\).

Phương pháp giải – Xem chi tiết

+ Thay giá trị P = 2 vào biểu thức;

+ Tìm điều kiện xác định của P;

+ Quy đồng mẫu hai vế của phương trình rồi bỏ mẫu.

+ Giải phương trình vừa nhận được.

+ Kiểm tra điều kiện xác định và kết luận nghiệm của phương trình ban đầu.

Lời giải chi tiết

Để biểu thức P = 2, ta có:

\(2 = \frac{{10}}{3} – \frac{{3k – 1}}{{4k + 12}} – \frac{{7k + 2}}{{6k + 18}}\)

Điều kiện xác định của phương trình là \(k \ne  – 3\).

Quy đồng hai vế và bỏ mẫu, ta được:

\(\begin{array}{l}2 = \frac{{10}}{3} – \frac{{3k – 1}}{{4k + 12}} – \frac{{7k + 2}}{{6k + 18}}\\2 = \frac{{10}}{3} – \frac{{3k – 1}}{{4\left( {k + 3} \right)}} – \frac{{7k + 2}}{{6\left( {k + 3} \right)}}\\\frac{{24\left( {k + 3} \right)}}{{12\left( {k + 3} \right)}} = \frac{{40\left( {k + 4} \right)}}{{12\left( {k + 3} \right)}} – \frac{{3\left( {3k – 1} \right)}}{{12\left( {k + 3} \right)}} – \frac{{2\left( {7k + 2} \right)}}{{12\left( {k + 3} \right)}}\\24k + 72 = 40k + 160 – 9k + 3 – 14k – 4\\24k – 40k + 9k + 14k = 160 + 3 – 4 – 72\\7k = 87\\k = \frac{{87}}{7}\end{array}\)

Ta thấy \(k = \frac{{87}}{7}\) thỏa mãn điều kiện xác định.

Vậy \(k = \frac{{87}}{7}\) thì biểu thức P có giá trị bằng 2.

TẢI APP ĐỂ XEM OFFLINE

Toán 9 tập 1 – Cùng khám phá