Giải bài 6.23 trang 10 sách bài tập toán 8 – Kết nối tri thức với cuộc sống

Cho biểu thức \(P = \frac{{2x – 6}}{{{x^3} – 3{x^2} – x + 3}} + \frac{{2{x^2}}}{{1 – {x^2}}} – \frac{6}{{x – 3}}\left( {x \ne 3,x \ne 1,x \ne – 1} \right)\)

Đề bài

Cho biểu thức \(P = \frac{{2x – 6}}{{{x^3} – 3{x^2} – x + 3}} + \frac{{2{x^2}}}{{1 – {x^2}}} – \frac{6}{{x – 3}}\left( {x \ne 3,x \ne 1,x \ne  – 1} \right)\)

a) Rút gọn phân thức \(\frac{{2x – 6}}{{{x^3} – 3{x^2} – x + 3}}\).

b) Chứng tỏ rằng có thể viết \(P = a + \frac{b}{{x – 3}}\) trong đó a, b là những hằng số.

c) Tìm tập hợp các giá trị nguyên của x để P có giá trị là số nguyên.

Phương pháp giải – Xem chi tiết

a) Sử dụng kiến thức rút gọn phân thức để chứng minh:

+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn

+ Muốn rút gọn một phân thức đại số ta làm như sau:

– Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;

– Chia cả tử và mẫu cho nhân tử chung đó.

b) Sử dụng kiến thức trừ hai phân thức cùng mẫu để tính: Trừ các tử thức với nhau và giữ nguyên mẫu thức: \(\frac{A}{M} – \frac{B}{M} = \frac{{A – B}}{M}\)

c) Một phân số là số nguyên khi tử số chia hết cho mẫu số (hay mẫu số là ước của tử số).

Lời giải chi tiết

a) \(\frac{{2x – 6}}{{{x^3} – 3{x^2} – x + 3}} = \frac{{2x – 6}}{{{x^2}\left( {x – 3} \right) – \left( {x – 3} \right)}} = \frac{{2\left( {x – 3} \right)}}{{\left( {{x^2} – 1} \right)\left( {x – 3} \right)}} = \frac{2}{{{x^2} – 1}}\)

b) \(P = \frac{{2x – 6}}{{{x^3} – 3{x^2} – x + 3}} + \frac{{2{x^2}}}{{1 – {x^2}}} – \frac{6}{{x – 3}} = \frac{2}{{{x^2} – 1}} – \frac{{2{x^2}}}{{{x^2} – 1}} – \frac{6}{{x – 3}}\)

\( = \frac{{2 – 2{x^2}}}{{{x^2} – 1}} – \frac{6}{{x – 3}} = \frac{{ – 2\left( {{x^2} – 1} \right)}}{{{x^2} – 1}} – \frac{6}{{x – 3}} =  – 2 – \frac{6}{{x – 3}}\)

Vậy viết P dưới dạng \(P = a + \frac{b}{{x – 3}}\), trong đó a, b là những hằng số.

c) Để P có giá trị nguyên thì \(\frac{{ – 6}}{{x – 3}}\) có giá trị nguyên, khi đó \(x – 3\) là ước của 6.

Do đó, \(\left( {x – 3} \right) \in \)Ư(6)\( = \left\{ {1; – 1;2; – 2;3; – 3;6; – 6} \right\}\)

Ta có bảng:

Vậy \(x \in \left\{ {4;\;5;\;2;\;6;\;0;\;9;\; – 3} \right\}\)

TẢI APP ĐỂ XEM OFFLINE

SBT TOÁN TẬP 2 – KẾT NỐI TRI THỨC VỚI CUỘC SỐNG