Giải bài tập 1.13 trang 18 SGK Toán 9 tập 1 – Cùng khám phá

Tìm các giá trị của \(m\) và \(n\) để đa thức sau bằng đa thức 0: \(P\left( x \right) = \left( {5m – 3n – 1} \right)x + m – 4n – 12\)

Đề bài

Tìm các giá trị của \(m\) và \(n\) để đa thức sau bằng đa thức 0:

\(P\left( x \right) = \left( {5m – 3n – 1} \right)x + m – 4n – 12\)

Phương pháp giải – Xem chi tiết

+ Cho đa thức bằng 0;

+ Suy ra được hệ phương trình;

+ Áp dụng cách giải hệ phương trình để tìm giá trị của \(m\) và \(n\).

Lời giải chi tiết

Để đa thức \(P\left( x \right) = 0\) thì \(\left( {5m – 3n – 1} \right)x + m – 4n – 12 = 0\)

Suy ra \(\left\{ \begin{array}{l}5m – 3n – 1 = 0\\m – 4n – 12 = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}5m – 3n = 1\\m – 4n = 12\end{array} \right.\).

Nhân hai vế của phương trình thứ hai với 5, ta thu được hệ sau: \(\left\{ \begin{array}{l}5m – 3n = 1\\5m – 20n = 60\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {5m – 3n} \right) – \left( {5m – 20n} \right) = 1 – 60\\5m – 3n – 5m + 20n =  – 59\\17n =  – 59\\n = \frac{{ – 59}}{{17}}.\end{array}\)

Thay \(n = \frac{{59}}{{17}}\) vào phương trình \(m – 4n = 12\), ta có:

\(\begin{array}{l}m – 4.\frac{{ – 59}}{{17}} = 12\\m = \frac{{ – 32}}{{17}}.\end{array}\)

Vậy khi \(m = \frac{{ – 32}}{{17}}\) và \(n = \frac{{ – 59}}{{17}}\) thì đa thức đã cho bằng đa thức 0.

TẢI APP ĐỂ XEM OFFLINE

Toán 9 tập 1 – Cùng khám phá