Giải bài 6 trang 76 SGK Toán 7 tập 2 – Chân trời sáng tạo

Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến cắt nhau tại F (Hình 10). Biết BE = 9 cm, tính độ dài đoạn thẳng DF.

Đề bài

Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến cắt nhau tại F (Hình 10). Biết BE = 9 cm, tính độ dài đoạn thẳng DF.

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

– Ta chứng minh F là trọng tâm tam giác ABC

– Sau đó chứng minh CD = BE

– Áp dụng định lí về trọng tâm tam giác ta tính các đoạn DF, EF

Lời giải chi tiết

Vì BE, CD là 2 trung tuyến của tam giác ABC nên E, D lần lượt là trung tuyến của AB và AC

\( \Rightarrow AD = AE = \dfrac{1}{2}AB = \dfrac{1}{2}AC\)

Xét tam giác ADC và tam giác AEB có :

AD = AE (gt)

\(\widehat{A}\) chung

AB = AC (do \(\Delta ABC\) cân tại A )

\( \Rightarrow \Delta ADC = \Delta AEB(c – g – c)\)

\( \Rightarrow BE = CD\)(cạnh tương ứng)

Tam giác ABC có F là giao điểm của 2 trung tuyến BE, CD nên F là trọng tâm tam giác ABC

\( \Rightarrow CF = BF = \dfrac{2}{3}BE = \dfrac{2}{3}CD\) ( định lí về trung tuyến đi qua trọng tâm tam giác )

\( \Rightarrow \dfrac{1}{3}BE = \dfrac{1}{3}CD \Rightarrow DF = FE = \dfrac{1}{3}.9cm = 3cm\)

\( \Rightarrow \) DF = 3 cm 

TẢI APP ĐỂ XEM OFFLINE

Toán 7 tập 1 – Chân trời sáng tạo

Toán 7 tập 2 – Chân trời sáng tạo