Giải bài 2.27 trang 46 SGK Toán 8 tập 1 – Kết nối tri thức

Phân tích các đa thức sau thành nhân tử:

Đề bài

Phân tích các đa thức sau thành nhân tử:

a)      \({x^3} + {y^3} + x + y\)

b)      \({x^3} – {y^3} + x – y\)

c)      \({\left( {x – y} \right)^3} + {\left( {x + y} \right)^3}\)

d)      \({x^3} – 3{x^2}y + 3x{y^2} – {y^3} + {y^2} – {x^2}\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, sử dụng hằng đẳng thức

Lời giải chi tiết

a) \({x^3} + {y^3} + x + y = \left( {x + y} \right)\left( {{x^2} – xy + {y^2}} \right) + \left( {x + y} \right) = \left( {x + y} \right)\left( {{x^2} – xy + {y^2} + 1} \right)\)

b) \({x^3} – {y^3} + x – y = \left( {x – y} \right)\left( {{x^2} + xy + {y^2}} \right) + \left( {x – y} \right) = \left( {x – y} \right)\left( {{x^2} + xy + {y^2} + 1} \right)\)

c)

\(\begin{array}{l}{\left( {x – y} \right)^3} + {\left( {x + y} \right)^3} = \left( {x – y + x + y} \right)\left[ {{{\left( {x – y} \right)}^2} – \left( {x – y} \right)\left( {x + y} \right) + {{\left( {x + y} \right)}^2}} \right]\\ = 2x.\left( {{x^2} – 2xy + {y^2} – {x^2} + {y^2} + {x^2} + 2xy + {y^2}} \right) = 2x\left( {{x^2} + 3{y^2}} \right)\end{array}\)

d)

\(\begin{array}{l}{x^3} – 3{x^2}y + 3x{y^2} – {y^3} + {y^2} – {x^2} = \left( {{x^3} – 3{x^2}y + 3x{y^2} – {y^3}} \right) + \left( {{y^2} – {x^2}} \right)\\ = {\left( {x – y} \right)^3} + \left( {y – x} \right)\left( {y + x} \right) = \left( {x – y} \right)\left[ {{{\left( {x – y} \right)}^2} – y – x} \right] = \left( {x – y} \right)\left( {{x^2} – 2xy + {y^2} – x – y} \right)\end{array}\)

Các bài khác cùng chuyên mục

TẢI APP ĐỂ XEM OFFLINE

Toán 8 tập 1 – Kết nối tri thức với cuộc sống

Toán 8 tập 2 – Kết nối tri thức