Bài 5 trang 169 SBT hình học 12

Giải bài 5 trang 169 sách bài tập hình học 12. Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: …

Đề bài

Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: \(\frac{x}{{ – 3}} = \frac{y}{{ – 1}} = \frac{z}{2}\)

a) Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).

b) Tìm tập hợp những điểm cách đều ba điểm A, B, C.

Lời giải chi tiết

a) Có hai trường hợp xảy ra:

Trường hợp 1:

(P) đi qua A, song song với hai đường thẳng d và BC.

Vectơ chỉ phương của d là \(\overrightarrow v  = \left( { – 3; – 1;2} \right)\) và \(\overrightarrow {BC}  = \left( { – 2;4;0} \right)\)

Do đó \(\overrightarrow {{n_{\left( P \right)}}}  = \left[ {\overrightarrow v ,\overrightarrow {BC} } \right] = \left( { – 8; – 4; – 14} \right)\)

Phương trình mặt phẳng (P) là:

-8(x – 1) – 4(y – 2) – 14(z – 1) = 0 hay 4x + 2y + 7z – 15 = 0

Trường hợp 2:

(P) đi qua A, đi qua trung điểm F(1; 1; 1) của BC, và song song với d.

Ta có: \(\overrightarrow {FA}  = \left( {0;1;0} \right),\left[ {\overrightarrow {FA} ,\overrightarrow v } \right] = \left( {2;0;3} \right)\)

Suy ra phương trình của (P) là:

2(x – 1) + 3(z – 1) = 0 hay 2x + 3z – 5 = 0.

b) Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.

Những điểm cách đều ba điểm A, B, C là giao tuyến Δ = (Q) ∩ (R).

(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có \(\overrightarrow {{n_Q}}  = \overrightarrow {AB}  = \left( {1; – 3;0} \right)\)

Do đó phương trình của (Q) là:

x – 3/2 – 3(y – 1/2) = 0 hay x – 3y = 0

(R) đi qua trung điểm F(1; 1; 1) của BC và có \(\overrightarrow {{n_R}}  = \overrightarrow {BC}  = \left( { – 2;4;0} \right)\)

Do đó phương trình (R) là: x – 2y + 1 = 0

Ta có: \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( {0;0; – 2} \right)\)

Lấy D(-3; -1; 0) thuộc (Q) ∩ (R)

Suy ra Δ là đường thẳng đi qua D và có vectơ chỉ phương \(\overrightarrow u  = \left( {0;0;1} \right)\)

nên có phương trình là: \(\left\{ \begin{array}{l}x =  – 3\\y =  – 1\\z = t\end{array} \right.\)

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE