Bài 4.40 trang 208 SBT giải tích 12

Giải bài 4.40 trang 208 sách bài tập giải tích 12. Chứng tỏ rằng…

Đề bài

Chứng tỏ rằng \(\dfrac{{z – 1}}{{z + 1}}\) là số thực khi và chỉ khi \(z\) là một số thực khác \(– 1\).

Phương pháp giải – Xem chi tiết

Đặt \(\dfrac{{z – 1}}{{z + 1}} = a \in \mathbb{R}\), biến đổi tìm \(z\) theo \(a\) và suy ra điều phải chứng minh.

Lời giải chi tiết

Hiển nhiên nếu \(z \in \mathbb{R},z \ne  – 1\) thì \(\dfrac{{z – 1}}{{z + 1}} \in \mathbb{R}\)

Ngược lại, nếu \(\dfrac{{z – 1}}{{z + 1}} = a \in \mathbb{R}\) thì \(z – 1 = az + a\) và \(a \ne 1\)

Suy ra \((1 – a)z = a + 1\)\( \Rightarrow z = \dfrac{{a + 1}}{{1 – a}} \in \mathbb{R}\) và hiển nhiên \(z \ne  – 1\)

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE