Bài 3.32 trang 130 SBT hình học 12

Giải bài 3.32 trang 130 sách bài tập hình học 12. Viết phương trình của đường thẳng nằm trong mặt phẳng …

Đề bài

Viết phương trình của đường thẳng \(\Delta \) nằm trong mặt phẳng \((\alpha )\): x + 2z = 0 và cắt hai đường kính \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 – t}\\{y = t}\\{z = 4t}\end{array}} \right.\) và  \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 – t’}\\{y = 4 + 2t’}\\{z = 4}\end{array}} \right.\)

Phương pháp giải – Xem chi tiết

– Tham số hóa tọa độ hai giao điểm.

– Thay tọa các điểm vào phương trình mặt phẳng \(\left( \alpha  \right)\), từ đó suy ra tọa độ các điểm.

– Viết phương trình đường thẳng đi qua hai điểm và kết luận.

Lời giải chi tiết

Gọi A và B lần lượt là giao điểm của \({d_1}\) và \({d_2}\) với \((\alpha )\).

Đường thẳng \(\Delta \) cần tìm chính là đường thẳng AB.

Ta có: \(A(1 – t;t;4t) \in {d_1}\)

\(A \in (\alpha ) \Leftrightarrow t + 4.(2t) = 0 \Leftrightarrow t = 0\)

Suy ra:  A(1; 0; 0)

Ta có :  \(B(2 – t’;4 + 2t’;4) \in {d_2}\)

\(B \in (\alpha ) \Leftrightarrow 4 + 2t’ + 8 = 0 \Leftrightarrow t’ =  – 6\)

Suy ra  B(8; -8; 4)

\(\Delta \)  đi qua A, B nên có vecto chỉ phương \(\overrightarrow {{u_\Delta }}  = \overrightarrow {AB}  = (7; – 8;4)\)

Phương trình chính tắc của \(\Delta \) là:  \(\dfrac{{x – 1}}{7} = \dfrac{y}{{ – 8}} = \dfrac{z}{4}\)

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE