Bài 2 trang 150 Vở bài tập toán 9 tập 2

Giải bài 2 trang 150 VBT toán 9 tập 2. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:…

Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:

\(\left( {\dfrac{{2 + \sqrt x }}{{x + 2\sqrt x  + 1}} – \dfrac{{\sqrt x  – 2}}{{x – 1}}} \right).\dfrac{{x\sqrt x  + x – \sqrt x  – 1}}{{\sqrt x }}\)

Phương pháp giải – Xem chi tiết

+ Tìm điều kiện

+ Phân tích mẫu thành nhân tử và qui đồng mẫu thức trong ngoặc rồi rút gọn biểu thức.

Lời giải chi tiết

Điều kiện: \(x > 0;x \ne 1\)

Đặt \(\sqrt x=a\) thì biểu thức trở thành:

\(\left( {\dfrac{{2 + a}}{{{a^2} + 2a + 1}} – \dfrac{{a – 2}}{{{a^2} – 1}}} \right).\dfrac{{{a^3} + {a^2} – a – 1}}{a}\)

\( = \dfrac{{\left( {2 + a} \right)\left( {a – 1} \right) – \left( {a – 2} \right)\left( {a + 1} \right)}}{{{{\left( {a + 1} \right)}^2}\left( {a – 1} \right)}}.\dfrac{{{a^2}\left( {a + 1} \right) – \left( {a + 1} \right)}}{a}\)

\( = \dfrac{{2a}}{{\left( {a + 1} \right)\left( {a + 1} \right)\left( {a – 1} \right)}}.\dfrac{{\left( {a – 1} \right)\left( {a + 1} \right)\left( {a + 1} \right)}}{a}\)

\( = \dfrac{{2a}}{a} = 2\)

Vậy biểu thức trên có giá trị bằng \(2\) (là hằng số) nên nó không phụ thuộc vào biến.

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE