Bài 1.32 trang 17 SBT giải tích 12

Giải bài 1.32 trang 17 sách bài tập giải tích 12. Xác định giá trị của tham số m để hàm số sau có cực trị:…

Đề bài

Xác định giá trị của tham số \(m\) để hàm số sau có cực trị: \(y = {x^3} – 3\left( {m – 1} \right){x^2} – 3\left( {m + 3} \right)x – 5\)

A. \(m  \ge 0\)                B. \(m \in \mathbb{R}\)

C. \(m < 0\)               D. \(m \in \left[ { – 5;5} \right]\)

Phương pháp giải – Xem chi tiết

Hàm số có cực trị nếu đạo hàm đổi dấu trên TXĐ \(D\).

Lời giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y’ = 3{x^2} – 6\left( {m – 1} \right)x – 3\left( {m + 3} \right)\).

Hàm số có cực trị nếu đạo hàm đổi dấu trên \(\mathbb{R}\)

\( \Leftrightarrow 3{x^2} – 6\left( {m – 1} \right)x – 3\left( {m + 3} \right) = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ‘ = 9{\left( {m – 1} \right)^2} + 9\left( {m + 3} \right) > 0\) \( \Leftrightarrow 9\left( {{m^2} – m + 4} \right) > 0\) (luôn đúng với \(\forall m\))

(Vì \({m^2} – m + 4 = {\left( {m – \frac{1}{2}} \right)^2} + \frac{{15}}{4} > 0\) với mọi m)

Vậy với mọi \(m \in \mathbb{R}\) thì hàm số luôn có cực trị.

Chú ý:

Cũng có thể giải thích \({m^2} – m + 4 > 0,\forall m\) bằng cách tính \({\Delta _m} = {\left( { – 1} \right)^2} – 4.1.4 =  – 15 < 0\)

Chọn B.

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE