Bài 1.13 trang 12 SBT Giải tích 12 Nâng cao

Giải bài 1.13 trang 12 sách bài tập Giải tích 12 Nâng cao. Cho hàm số …

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(f(x) = 2\sin x + \tan x – 3x\)

LG a

Chứng minh rằng hàm số  đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\)

Lời giải chi tiết:

Hàm số đã cho liên tục trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) , ta có

\(f'(x) = 2\cos x + {1 \over {{{\cos }^2}x}} – 3\)

\( = {{2{{\cos }^3}x – 3\cos x + 1} \over {{{\cos }^2}x}}\)

\( = {{{{(1 – cosx)}^2}(2\cos x + 1)} \over {{{\cos }^2}x}} > 0\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\)

Do đó hàm số f đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\)

LG b

Chứng minh rằng

\(2\sin x + \tan x > 3x\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\)

Lời giải chi tiết:

Từ a) suy ra \(f(x) > f(0) = 0\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\), tức là ta có bất đẳng thức cần chứng minh.

Webgiaibaitap.com

TẢI APP ĐỂ XEM OFFLINE

GIẢI TÍCH SBT – TOÁN 12 NÂNG CAO