Công thức lượng giác đầy đủ nhất cho lớp 9, lớp 10, lớp 11

02/12/2024.


Tổng hợp các công thức lượng giác đầy đủ nhất dùng trong cả chương trình toán lớp 9, 10, 11, bao gồm các công thức lượng giác cơ bản, công thức nhân, biến đổi tích thành cổng, lượng giác của các cung đặc biệt, giá trị lượng giác của các góc đặc biệt, các công thức nghiệm cơ bản… Hãy nắm vững những công thức này để có thể triển khai các dạng bài tập về lượng giác. Mời các bạn tham khảo.

11 Công thức lượng giác phải nắm chắc

Khái niệm tỉ số lượng giác của một góc nhọn

Lượng giác

Với:

  • sin α: là tỉ số giữa cạnh đối và cạnh huyền của góc α
  • cos α: là tỉ số giữa cạnh kề và cạnh huyền của góc α
  • tan α: là tỉ số giữa cạnh đối và cạnh kề của góc α
  • cot α: là tỉ số giữa cạnh kề và cạnh đối của góc α

Mẹo học thuộc : Sin đi học, Cos không hư, Tan đoàn kết, Cot kết đoàn

Công thức chuyển đổi góc sang radian và ngược lại

{\beta ^0} = \frac{{\pi .\beta }}{{{{180}^0}}}rad \alpha rad = {\left( {\frac{{180\alpha }}{\pi }} \right)^0}

Công thức lượng giác cơ bản

1. \tan x =\frac{\sin x}{\cos x}  với x \neq \frac{\pi}{2} + k\pi;\left(k\mathbb{\in Z} \right)

2.\cot x =\frac{\cos x}{\sin x} với x\neq k\pi;\left( k\mathbb{\in Z}\right)

3.\ \sin^2x+\cos^2x=1

4.\ \tan x.\cot x=1\left(x\ne k\frac{\pi}{2},\ k\ ∈\ Z\right)

5.\ 1+\tan^2x=\frac{1}{\cos^2x}\ \left(x\ne\frac{\pi}{2}+k\pi,\ k\ ∈\ Z\right)

6.\ 1+\cot^2x=\frac{1}{\sin^2x}\ \left(x\ne k\pi,\ k\ ∈\ Z\right)

Công thức cộng lượng giác

1. sin (a ± b) = sin a.cos b ± cos a.sin b

2. cos (a + b) = cos a.cos b – sin a.sin b

3. cos (a – b) = cos a.cos b + sin a.sin b

4.\ \tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan.\tan b}

5.\ \tan\left(a-b\right)=\frac{\tan a-\tan b}{1+\tan a.\tan b}

Mẹo nhớ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.

Công thức các cung liên kết trên đường tròn lượng giác

Mẹo nhớ: cos đối, sin bù, phụ chéo, tan hơn kém π

Với mọi góc lượng giác α và số nguyên k ta có:

Hai góc đối nhau:

  • cos (-x) = cos x
  • sin (-x) = -sin x
  • tan (-x) = -tan x
  • cot (-x) = -cot x

Hai góc bù nhau:

  • sin (π – x) = sin x
  • cos (π – x) = -cos x
  • tan (π – x) = -tan x
  • cot (π – x) = -cot x

Hai góc phụ nhau:

  • sin (π/2 – x) = cos x
  • cos (π/2 – x) = sin x
  • tan (π/2 – x) = cot x
  • cot (π/2 – x) = tan x

Hai góc hơn kém π:

  • sin (π + x) = -sin x
  • cos (π + x) = -cos x
  • tan (π + x) = tan x
  • cot (π + x) = cot x

Hai góc hơn kém π/2:

  • sin (π/2 + x) = cos x
  • cos (π/2 + x) = -sin x
  • tan (π/2 + x) = -cot x
  • cot (π/2 + x) = -tan x

Công thức nhân đôi

Công thức nhân đôi

  • sin2a = 2sina.cosa
  • cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a
  • \tan2a=\frac{2\tan a}{1-\tan^2a}
  • \cot2a=\frac{\cot^2a\ -1}{2\cot a}

Công thức nhân ba

  • sin3a = 3sina – 4sin3a
  • cos3a = 4cos3a – 3cosa
  • \tan3a=\frac{3\tan a-\tan^3a}{1-3\tan^2a}
  • \cot3a=\frac{\cot^3a-3\cot a}{3\cot^2a-1}

Công thức nhân bốn

  • sin4a = 4.sina.cos3a – 4.cosa.sin3a
  • cos4a = 8.cos4a – 8.cos2a + 1 hoặc cos4a = 8.sin4a – 8.sin2a + 1

Công thức hạ bậc

Thực ra những công thức này đều được biến đổi ra từ công thức lượng giác cơ bản, ví dụ như: sin2a=1 – cos2a = 1 – (cos2a + 1)/2 = (1 – cos2a)/2.

1.\ \sin^2a\ =\ \frac{1-\cos2a}{2}

2.\ \cos^2a=\frac{1+\cos2a}{2}

3.\ \sin^3a=\frac{3\sin a-\sin3a}{4}

4.\ \cos^3a=\frac{3\cos a+\cos3a}{4}

Công thức biến đổi tổng thành tích

Mẹo nhớ: cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.

1.\ \cos a+\cos b=2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}

2.\ \cos a-\cos b=-2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}

3.\ \sin\ a+\sin b=2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}

4.\ \sin\ a-\sin b=2\cos\frac{a+b}{2}.\sin\frac{a-b}{2}

5.\ \tan a+\tan b=\frac{\sin\left(a+b\right)}{\cos a.\cos b}

6.\ \tan a-\tan b=\frac{\sin\left(a-b\right)}{\cos a.\cos b}

7.\cot a + \cot b = \frac{\sin(a +b)}{\sin a.\sin b}

8.\cot a - \cot b = - \frac{\sin(a -b)}{\sin a.\sin b}

9.\ \sin a+\cos a=\sqrt{2}\sin\left(a+\frac{\pi}{4}\right)=\sqrt{2}\cos\left(a-\frac{\pi}{4}\right)

10.\ \sin a-\cos a=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)

11.\ \tan a+\cot a=\frac{2}{\sin2a}

12.\ \cot a-\tan a=2\cot2a

13.\ \sin^4a+\cos^4a=1-\frac{1}{2}\sin^22a=\frac{1}{4}\cos4a+\frac{3}{4}

14.\ \sin^6a+\cos^6a=1-\frac{3}{4}\sin^22a=\frac{3}{8}\cos4a+\frac{5}{8}

Công thức biến đổi tích thành tổng

1.\ \cos a.\cos b=\frac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right]2.\ \sin a.\sin b=-\frac{1}{2}\left[\cos\left(a+b\right)-\cos\left(a-b\right)\right]

3.\ \sin a.\cos b=-\frac{1}{2}\left[\sin\left(a+b\right)+\sin\left(a-b\right)\right]

Phương trình lượng giác

Phương trình lượng giác cơ bản

1.\sin a = \sin b \Leftrightarrow \left[ \begin{gathered}
  a = b + k2\pi  \hfill \\
  a = \pi  - {\text{b}} + {\text{k}}2\pi  \hfill \\ 
\end{gathered}  \right.\left( {k \in \mathbb{Z}} \right)

2.\cos a = \cos b \Leftrightarrow \left[ \begin{gathered}
  a = b + k2\pi  \hfill \\
  a =  - b + k2\pi  \hfill \\ 
\end{gathered}  \right.\left( {k \in \mathbb{Z}} \right)

3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)

4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)

Phương trình lượng giác đặc biệt

Dấu của các giá trị lượng giác

Góc phần tư số I II III IV
Giá trị lượng giác
sin x + +
cos x + +
tan x + +
cot x + +

Bảng giá trị lượng giác một số góc đặc biệt

 Bảng giá trị lượng giác một số góc đặc biệt

Quan sát trực quan các góc đặc biệt trên đường tròn lượng giác như sau:

Công thức lượng giác đầy đủ nhất cho lớp 9, lớp 10, lớp 11

Tỉ số lượng giác của 2 góc phụ nhau. (α + β = 90°)

sin α = cos β cos α = sin β
tan α = cot β

cot α = tan β

Công thức lượng giác bổ sung

Biểu diễn công thức theo t=\frac{\tan a}{2}  

1.\ \sin a=\frac{2t}{1+t^2}\ \ \ \ \ \ \ \ \ \ \ \ 2.\ \cos a=\frac{1-t^2}{1+t^2}

3.\ \tan\ a=\frac{2t}{1-t^2}\ \ \ \ \ \ \ \ \ \ 4.\ \cot a=\frac{1-t^2}{2t}

Các công thức đạo hàm và đạo hàm lượng giác đầy đủ nhất



Nguồn Quantrimang

Share:

Bài liên quan

[ad_1] Carina Hong - Một sinh viên 24 tuổi bỏ học tại Stanford đã thành công thuê được các nhà nghiên cứu Meta AI hàng...
[ad_1] Khi tuyển dụng nhân viên, các công ty thường đưa ra quyết định cuối cùng dựa trên kinh nghiệm được thể hiện trong cả...
[ad_1] Xuân Linh [ad_2] Nguồn Quantrimang
[ad_1] Vũ An [ad_2] Nguồn Quantrimang
[ad_1] Ái Thi [ad_2] Nguồn Quantrimang
[ad_1] Giới trẻ ngày nay thường gặp phải khá nhiều vấn đề liên quan đến việc quản lý tiền bạc. Cũng vì lý do này...
[ad_1] Tập viết hai tay cùng một lúc, thử phản xạ với những văn bản nhiều màu sắc hay bảng số là các bài tập...
[ad_1] Mỗi ngày chúng ta thường bị "dội bom" tinh thần bằng những khẩu hiệu rằng: "Đừng bao giờ từ bỏ giấc mơ của bạn!",...
[ad_1] Có những điều trong cuộc sống đôi khi quá rõ ràng nhưng vì một lý do nào đó ta không thể nhận ra được....
[ad_1] Tất cả chúng ta đều đang sống trong một xã hội được công nghệ bao phủ hoàn toàn. Không biết mọi người cảm thấy...